APPENDIX A: ALECALL PROGRAM

15

A-1

A-2

This appendix contains both general and detailed software charts of the ALECALL program. The
charts describe the logic flow of the program and of key modules, the modular structure of the
program, and the data flow. The ALECALL overview logic flowchart explains the ALECALL
program execution (Figure A-1). The program is executed with command line arguments. The
switches that invoke the various modes of operation are explained in the help menu which may be
accessed by typing “alecal I” without any other command line arguments. No switches are used to
run the program in normal mode; switches are used to change the expected input format, output file,
or add debugging, or chimes. The name(s) of the input protocol files to be made into sound files must
be designated on the command line for the program to run. Wildcard designations for the file names,
such as “*” or “?”, may be used. Typing “alecall filename.pro” invokes the program in
normal mode. The program initializes its variables and structures, parses the command line to set the
mode of operation, and opens the first protocol file on the command line. It reads each line in the
protocol file, ignoring comments. The noise, fading, or multipath (NFM) input parameters are stored
until an initialize command is read, at which point the degraded conditions are set and the filters are
made. Degraded conditions can be turned on and off anywhere in the protocol file. ALECALL
modulates the ALE word into the 49 ALE tones. The ASCII octal representation of the 49 tones is
recorded in a tone file named filename.ton and the tones are converted to 16-bit, 44.1-kHz sampled
cosine waves. These waves are written to the sound file after any specified NFM conditions are
added to the signal. The process is repeated for the ALE word as many times as designated in the line
of the protocol file. When all the repetitions are written to a file, the next line is read and processed,
until the end of the file is reached. The file handling procedure is repeated, reading each protocol file
specified on the command line, until all of the protocol files have been converted to tone and sound
files.

The ALECALL structure chart (Figure A-2) shows the different modules of the program and the
calling hierarchy (which procedures are called and by whom). Main parses the command line and
calls make_it, which does most of the work of the program, to process each input file. The last
overview chart is the high level data flow diagram (Figure A-3). Flowcharts for the most important
program modules follow. There are three logic flowcharts: the main module (Figure A-4), the NFM
module (Figure A-5), and the make_it module (Figure A-6). The main module logic flowchart shows
the flow of the main body of the program. The NFM module explains the procedure for turning NFM
conditions on and off. It also shows when new conditions are saved or used. The make_it flowchart
describes how each line of the input file is parsed and converted into a sound file representing an
ALE call.

The ALECALL program has several modes of operation. It can directly convert a tone file into a
sound file. This is the way the two calibration tracks on the Clean Tone CD-01a were created: the
second track 1,000-Hz tone and the third track stair-step of all 8 ALE tones. The tone file must be in
the exact format as that of a tone file produced by the program. The process is a truncated version of
the normal execution, beginning at the point where the ALE tones are converted to cosine waves; it is
invoked with a command line switch. The program reads the input tone file and converts the octal
representations of the ALE tones into the 16-bit, 44.1-kHz sampled cosine waves and writes

16

A-3

the samples to the sound file. Only clean tone files may be created since the channel degradation
conditions are specified in the protocol file. Because the first part of the ALE conversion process
(building the tone file) is already accomplished before the program begins and channel degradation is
not added, this mode is the fastest method of producing the sound files.

The ALECALL program can also be run to produce only tone files. In this mode the input protocol
files are quickly converted to tone files. Although NFM parameters can be specified in the protocol
file, they will be ignored since the tone file contains no NFM information. Another operating mode,
the verbose mode, may be run concurrently with any of the others. This mode provides additional
information on the computer screen to assist and inform the user of the program operations.

Four utility programs are included with the ALECALL program. These programs facilitate the use of
the ALECALL software by either encoding difficult features of ALE or providing information on
playing the sound files. ALETIME uses the input protocol files to compute the running times of the
sound files. The protocol files to be computed are specified on the command line when the program
is invoked. The program writes, to the computer screen, the running times of each individual file and
the total running time.

The other three utility programs, C-AMD, C-DTM, and C-LQA, assist the user in preparing the
protocol file with the following ALE call features: AMD messaging, DTM messaging, and LQA
transmissions and requests. Protocol files produced by the utility programs can be read by
ALECALL. C-AMD encodes the AMD message specified on the command line and writes it to a
protocol file. The command line parameters include the call signs of the sender and the receiver, and
either the message in single quotes or the name of the file containing the message. C-DTM s
invoked in exactly the same manner with the addition of the kd4 [1] specification: “1” for
acknowledgement request or “0” for no acknowledgement request. C-LQA also uses the call signs of
the sender and receiver as input parameters. In addition, a control bit, the SINAD, BER, and debug
mode may be specified if desired. If an LQA response is chosen, the SINAD and BER are not
included. The help screens for these utility programs are in Appendix F, CD-INFO Information for
Users of the ALE Clean Tones Compact Disc 0la or may be invoked by typing the program name
with no other command line parameters.

17

‘UONNDIXA [RULIOU JO] LRYOIMO) J150] MATATAAD TTYIHTY "1-V 21

)
(e

get cmd line
arguments

v

set emd line
conditions

are there

wrile wave
header if needed
& close current

get new value

A 4

files

make filters
when INITIALIZE

close all
files @

more protocol
files?

are lhere
lines in

the file?

Is this a
comment?

is this
an NFM
parameter?

convert the line to an ALE word
(preamble & data word)

v

modulate the ALE word into
49 ALE tones

v

write to
*.ton file

convert tones to cosine wave

v

add channel degradation if
NFM = ON

write sound file

>

18

v

Bk LI B alecall.c - z
; main
L Chimes.c - - - « =« =+« c v ot e camenn
; init_chime_tile
: close_chime_file || param.c_ - make_it
: Vo help
_ .. |printit onvert
read_chime_head seek_chime_start | ©° + A -/ 7 7 Lo b NN - T - T
: ‘.- modulat2.c-
: ' . |modulate2
: \ txfec.c
. ; ; _doublet.c
. . |update_ton_tile| T
. |next_chime_samp | © | 7 A — Y ascii2ale
; - : ! Golay | -
. i | _ : : v fixdoublets
e e e : » getword :
create_filters \L..\i.....V encode

copy_param

i3 m_ugoa.n_

- - calibrat.c -

»

calibrate

Y
read_chan
waveheader
e __channel.c
modulate
noise
| multipath fade_filter_2 fade_filter_1

v

wrap

make_gauss_filter

make_fade_filter

Figure A-2. ALECALL structure chart.

X

random

19

A-6

“weI3erp mo[y vIep [2A9] Y31y TIVIHTV "€-V 2Ind1d

AeM BWERUSY
leineuow
@onpoid

81} ABM BWEUB|Y

XOA BWERUB|Y
sonpoud

81} XOA BWEUA|I
8|1} awiyd

sawiyo

ep aweualy

o|y ep oweUa|y ool

W4N % sajdwes
W4N % mw_aEmw

l0quAs d aul|
W4N g sajdwes_/ a)y joo0j0id et e
dapallioade 10 m_cﬂ,_m__”_m Iy
L W4N ppe 0} 8UI| JJ8AU0D
W4N 73 se|dwes
ABM BWRUDY
8|} AeM BWRUB|I 081818
oquAs
aonpoid 109 |oquAs
uoj)aweus|y
sonpoad
ey

8]} uoy aweua|y

8|y |020j04d

1x8} ||10SY

oid-aweua|y

a|l} joo0y0ad
jo auy

yoea peal

juawnbie sul pwo

oy
uo) aweus|ly
ul joquAs
yoea peal

aweualy

uoneoyyloads Jasn

aweus|ly

20

initialize

close N more

cmd line
arguments?

files

switch? N get the
(begins with ,
a - filename
Y
help
Y
Setdebug
Y
Calibrate —————
i Config= | >
monaural
% SetDa

(Digital
Audio)

Y.
Y.
SetVerbose
Y
SetToneOnly

SetChimes

3020 O N0 102102 102 1002 Ce

Figure A-4. ALECALL logic flowchart - Main module.

NFM = ON?

NEWINIT = 1

A-8

(clear channel)

save conditions & turnw
NFM off J

(is initialize new?)

continue
with old
filters

SEED = 07

use sec. past

midnight for random

seed

use SEED

create new
filters

NEWINIT = 0

Figure A-5. ALECALL logic flowchart - NFM module.

22

waveheader

— v

return
to main

open
files

waveheader

A-9

are
there lines in input
file?

@

get_nfm_parameters {

]

comment

parse all
works in line

end a
string
of ticks

v

convert
to ale

modulate

repeat?

end a
string of
ticks

calculate
times

—» Setsilence ——3P» modulate

is
Usechimes = 17
(repeat as specified)

find_chime_numb

moduate2

v

update_tone_file

Figure A-6. ALECALL logic flowchart - Make_it module.

23

